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We study the scaling behavior of the n-tuple coalescence process, described by the generalized Smolu-
chovski equations (GSE). It is found that, for a specific class of homogeneous reaction kernels, the clus-
ter size distribution approaches a scaling form, ¢, () ~s ~2¢(k /s), with the mean cluster size behaving as
s(t)~t” as t—>o. The dynamic exponent z and the small- and large-x behaviors of the scaling
function ¢(x) are derived from the GSE. For large x, it is found that @(x)= Ax "*e ™ (x —> )
[A=p+(n —1)v], which is valid for all gelling and nongelling coagulation kernels with v < 1. While for
small x, ¢(x)~x "7 or ¢(x)~exp(—x*) with u <0, depending on certain characteristics of the coagula-

tion kernels.

PACS number(s): 36.20. —r, 05.40.+j, 68.70.+w, 03.20.+i

I. INTRODUCTION

The kinetics of irreversible aggregation and clustering
phenomena, in particular, the time evolution of cluster
size distribution c,(¢) has been studied extensively by us-
ing the Smoluchovski coagulation equation:

&=3 X Kjici—cp 3 K(k,j; , (1
i+j=k j=1

where the coagulation kernel K (i,j) represents the rate
coefficient for a specific clustering mechanism between
clusters of sizes i and j. In the gelling mechanism the
mean cluster size s(tz) diverges as ¢ approaches the gel
point ¢,, while in nongelling mechanism s(¢) keeps in-
creasing with time. It is known from the exact solution
[1], coagulation experiments [2], and computer simula-
tions [3] that the cluster-size distribution approaches a
scaling form as soon as the typical size s () becomes large
compared to the characteristic size at initial time. A dy-
namic scaling theory has been developed to account for
the scaling behavior occurring in gelling and nongelling
systems, described by the Smoluchovski equation [4-6].
Recently, the n-tuple coagulation process has been stud-
ied by introducing a generalized Smoluchovski coagula-
tion equation (GSE) [7-10]:
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where the coagulation kernel K (i,,i,,...,i,) represents
the rate coefficient for a specific clustering mechanism
among n clusters of sizes iy, i,,...,i,, and i,. It is
remarked that K(i;,i,,...,i,) are given coefficients
which we shall in no way attempt to determine. Their
determination depends on very particular models of the
molecular processes involved, and may be obtained by us-
ing the relevant fluid theories for some simplified model

systems.
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The most commonly used reaction kernels in the litera-
ture are constant kernels, sum kernels, and product ker-
nels. The sum kernel may be obtained by the following
consideration. Suppose that the clusters move ballistical-
ly, then the collision probability of such 7 clusters is obvi-
ously proportional to the sum of the cross section of each
cluster. The cross section of the cluster of size k is given
by

S~ k 173 .
Thus, the corresponding coagulation kernel is given by

K(il’iZ’ “ e ,in)=si1 +S,-2+ cte +sin

In order to obtain the product kernel, let us consider the
following chemical reaction mechanism. Suppose that
the monomers are the basic reaction units. Clusters can
be coalesced through the reaction among those constitu-
ent reaction units. Suppose that s; is the effective num-
ber of such reaction units of a given cluster with k mono-
mers, then the reaction probability is given by the so-
called factorial kernel

K(i,i,,... ,i,,)=s,-1s,-2 s
For factorial coagulation kernel with s, = Ak + B, the ex-
act solution of the GSE has been derived for the mono-
dispersion initial condition ¢;(0)=8,, [9]. It has been
shown that a gelation transition occurs at a finite time ¢,.

For product kernel
@

K (i, iy, ..., 0,)=0iy i),

different critical properties have been found, which are
qualitatively similar to the behaviors predicted from
Smoluchovski equation for a binary coagulation process.

In this paper, we develop a scaling theory for the n-
tuple coagulation process by using GSE. We show that
for a class of special coagulation kernels the solution of
GSE approaches a scaling form. In Sec. II, we derive an
integral equation for the scaling function, starting from
the GSE. The dynamic exponent can also be obtained by
using a scaling ansatz. In Sec. III, we discuss the asymp-
totic behavior of the scaling function for different classes
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of the coagulation kernels. Finally, in Sec. IV, some con-
clusions are given.

II. THE INTEGRAL EQUATION
FOR SCALING FUNCTION ¢(x)

Since GSE is structurally similar to the Smoluchovski
equation, it is expected that GSE with a homogeneous
kernel is invariant under a group of similarity transfor-
mations. It is, therefore, expected that GSE may admit
exact similarity or scaling solutions [4], that can be
solved from a nonlinear integral equation. In principle,
one can study the scaling behavior of GSE for a general
homogeneous kernel such as

o Ly K
K{(i,iy,... DR M FE I M
TPy

n

yi, )=

where the summation is over all the possible permutation
among n clusters. In order to study the large-cluster-size
behavior of the concentration from GSE, it is convenient
to distinguish the reaction processes into different dom-
inant processes. There are, of course, various ways to do
so. One may, for example, assume that the reaction
among n — 1 large clusters and a small one, or n —2 large
clusters and two small ones, etc., is the dominant process
at large-cluster-size limit. However, at present stage, it is
still not clear whether GSE admits scaling solutions.
Therefore, as a first step towards a complete understand-
ing of the problem under consideration, we restrict our-
selves to the following specific homogeneous kernels:

£
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K (ai,aiy, ... ai,)=a*K (iy,iy, ... i,),

(3)

K ijyig, oy igiy iy )it

liv,igy oo osly >0, A=in —lv+pu],

which correspond to the case of reaction among n — 1
large clusters and a small one and are closely related with
the standard classification for binary reaction kernel. In
fact, this kernel reduces to the binary reaction kernel for
the standard Smoluchovski equation if n =2. It is noted
that u>0 corresponds to class I, =0 to class II, and
1 <0 to class III. Note also that there are two physical
restrictions on the exponents: For n large interpenetrable
clusters K (j,j,...,j)~j", which is an upper bound for
all K (j,j,...,j)as j— o, and thus A <n. Since a j-mer
contains at most j monomers, it is required that v<1.
There is no restriction imposed on u except
u=A—(n—1)v. In class I and III the rate constants for
reactions of one large sample with other n —1 small and
large samples are dominant, respectively. In class II, the
reaction rates are the same for large-large and large-small
clusters reactions. Nongelling systems correspond to
A=n —1, and gelling systems ton —1 <A =<n [7].

To study which aggregation mechanisms lead to gela-
tion, we consider the mass loss rate M, (t) across a cer-
tain cluster size k, which is defined by

. k
M (=3 jé; .
i=1

From Eq. (2), one finds

. )c,»]c,«2 e 4)

If M, (t)=0 for all times, then the sol mass is conserved, and the system is nongelling. The property M, (t)O0 for all
t 2 t, is interpreted as the occurrence of gelation, since there is a nonvanishing mass flux of finite-size particles (sol) to
the infinite cluster (gel). The right-hand side of Eq. (4) can only be nonvanishing if ¢, () has sufficiently slow (algebraic)
decay at large k, i.e., C, (1)~k" as k — 0. This ansatz gives in combination with Eqs. (3) and (4) that M ®(¢)#0 and is
bounded for all ¢ 2 ¢, if r=(n +1+A)/n. A further requirement is that the total sol mass M (¢) is bounded for ¢t > ¢,
implying 7> 2. Consequently, homogeneous coagulation kernels K (i,,i,, .. .,i,) of degree A describe gelling systems if
A>n —1 and nongelling systems if A <n — 1.
For nongelling systems, we are looking for a similarity solution to Eq. (2) of the general form,

c (t)~g(t)p(k /s(t)) . (5)
Since the sol mass is conserved in nongelling systems, we consider the following scaling ansatz:
cp(t)=Ms ¢k /s) . (6)

To determine the mean cluster size s(¢) and the scaling function ¢(x), we insert the scaling ansatz (6) into Eq. (2) and
obtain

_w[x¢,(x)+2¢(x)]=%f0xdxlfo ld)c2 N fo L2 nizdxn,l
XEK(X1,X0, 0o 3 XX =X —Xy— """ =X, )
Xo(x)p(xy) - dlx, | Np(x —x | —x,— -+ —x, )

——ﬂx—)—foxdxldxz cedx, o Kixg,x,, .

(n‘l)' ~xn——1.»x)¢(x1)¢(xz)'"d>(x"_

0. (7
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Here, w is a separation constant for the x and ¢ dependence, so that

§s" T2 A=Mw . ®)
Therefore, the mean cluster size s (¢) increases asymptotically as

s(t)~t* (t—>w), 9)

where the dynamic exponent z for all homogeneous coagulation kernels with A <(n —1) is given by

= 1 . (10
(n—1—A)

The result (10) shows that the larger 7 is, the slower s(#) increases, as predicted in the previous study [7]. The special
case of A=n — 1 is more involved and will be discussed elsewhere [11].

Note that in the derivation of Eq. (7), we have implicitly assumed that the separate integrals are convergent. If it is
not the case, the integrals may contain canceling infinities [4]. A representation of integral equation for scaling function
#(x) without canceling infinities can be obtained from Eq. (4),

wx2p(x)= foxdx, f:_dexz s

where consistency requires that x2¢(x)—0 as x —0. The constant w and the moments of the scaling function, defined
as

z

* dx, % K(x1,Xg, . -, X )(x)p(x,) " - - $(x,) , (11

XETXTXT T T

ma=fowdx“¢(x) s
are related as
(a—l)paw=G—lT)!fomdx1fowdx2 e fowdx,,K(xl,xz, ceesXy)
XP(x,)b(xy) - dlx, )[(x;+x,+ -+ +x,)°
—x{—x3— o —x]], (12)
where a must be sufficiently large that the integrals exist at the lower limit of integration.

III. ASYMPTOTIC BEHAVIORS OF THE SCALING FUNCTION

In this section, we study the large-x and small-x behaviors of the scaling function ¢(x) by analyzing the integral equa-
tions obtained in the previous section. It is noted that the solution ¢(x) of Eq. (7) contains a pair of arbitrary constants
(a,b), since for any given function ¢(x) also ¢(x)=bd¢(ax) is a solution. One constant is fixed by the requirement of
mass conservation p; =1. The other constant can be chosen such that w =1.

For large x, we are interested in finding solutions ¢(x) with exponential decay. It can be verified that the integral
equation (7) admits an exponential decay solution,

d(x)=>~ Ax ~x"exp(—ax) , (13)
where A, is given by
A+n—2
}"n=_7T . (14)

This solution is valid for all gelling and nongelling coagulation kernels with v < 1.

The small-x behavior of the scaling function ¢(x) can be obtained by studying GSE separately for the three classes.
In class I, we found that Eq. (7) admits algebraic solutions,

¢(x)~Bx" (x—0),

(15)
- A -
2—7w
B=———
L(r) ’ (17)
where the mass conservation in nongelling systems requires that 7 <2. The integral equation L (7) is defined as
L(r)= 1

mfomdxldxz Crrdxy KX xg, X, DX X, )T

1 pt I=x, I=xy=Xp= =X,y
e odx‘fo dxz---fo dx, (K(x1,%9, ..., Xp_1,1=x;—x— -+ —x,_)

XX 1Xg X)) (1=x;—xy— " —x, 1) 7. (18)
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In view of the specific reaction kernel (3), the second in-
tegral in Eq. (18) can be written as (see Appendix)

n—2
I=0[ S, (19)
i=0
where S (A;) is given by
S(Ai)=foldx K(x,1—x;A)x ~(1—x)"" . (20)

Thus, L (7) can be written as

1 ®
L(t)= n=1) fo dx dx, dx, K
XX 1yXpy ey X,_p1)
1 n—2
X(xl.X2 A _xn_l)*‘t‘__' H S()\'l) .
n:izo

Therefore, the small-x behavior, determined by the con-
vergence of the integral equation (18), can be deduced
from properties of the binary coagulation equation (21),
which has been studied in great detail in Ref. [4].

In class II [u=0,v=1/(n —1)], the small-x behavior
is still characterized by a power-law decay solution. It
can be shown that the dominant small-x contributions
come from the loss term in Eq. (2). Thus, the result for
class IT is

d(x)~x"7,

n—1
pmp 22)
w

Since 7 is given in terms of integrals over ¢(x), the small-
x behavior of class II depends on the specific form of the
coagulation kernel. For class III, the small-x behavior is
again governed by the loss term in GSE. HEnce, Eq. (7)
reduces to

—x¢'(x)~p(x)x "1 (23)
so that
d(x)~exp(—|ul), (24)

indicating that ¢(x) has a bell-shaped curve and vanishes
exponentially fast as x —0.

I=x;—=x;— " —x
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In gelling systems (n —1 <A =n), the cluster-size dis-
tribution in the postgel stage (¢ = ¢,) is assumed to be

cp(t)=Ms "d(k/s), (25)

where the mean cluster size s(¢) diverges as t —t, . By
inserting the scaling ansatz (6) into GGE, we obtain

Mw:js(nrl)fﬁn—}n .
so that
s(t)=sqlt,—1)" 17, (26)

where 0 =(1+A—n)/n. From Eq. (26), it is seen that the
mean cluster size is an increasing function of time and
diverges as t —t,, where ¢, has a finite value for gelling
systems.

IV. CONCLUSIONS

In summary, we have studied dynamic scaling proper-
ties of n-tuple coagulation process for specific homogene-
ous reaction kernel defined by Eq. (3). For nongelling
systems, we found that the cluster-size distribution ap-
proaches a scaling form, ¢, (¢)~s 2¢(k/s). The mean
cluster size behaves as s(f)~t%t—o) with
z=1/(n —1—A). The small-x behaviors of the scaling
function are found to be ¢(x)~x 7 for class I and class
IT kernels, and ¢(x)~exp(—x ~7) for class III kernel.
For gelling systems, the size distribution in the pregel
stage is found to be given by

O~k TPk(t,—)V) (t—t k—o), Q27

with o =(1+A—n)/nand r=(n +1+A1)/n.

For a binary coagulation one can recover all corre-
sponding results by setting n =2 in our GSE. It should
ben noted that in this paper, we have concentrated only
on a specific homogeneous coagulation kernel, which are
characterized by two exponents. In more complicated
cases, where the coagulation kernels are specified by j ex-
ponents (2<j<n), GSE will certainly show much
diverse behaviors, which might be qualitatively different
from the binary-collision coagulation process.

APPENDIX

The second integral in Eq. (18) reads

1 I=x, n-2
I=f0dx1fo dxz-"fo dx, K(x,x5, ... ,x, -, 1=x;—=x3— " —x, )
XXXy Xy_y) (1=x;—=xy— " —x, 1) (A1)
Defining
y=x,_/X, X=1—x,—x,— """ —x,_5, (A2)
and inserting (A2) into (A1), one gets
1 1=x, I=x=x,~ TXn-3 _ _
1=f0dx,fo dx2-~-fo dx, _o(xyxy Xy _5) T(1=x,—X,— "+ —x,_,) F, (A3)
where F is defined as
F=f01dy K(X|,X0, o3 Xp_p 1= X —x3— - —x, )X " y(1=p)] 7. (A4)
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In view of the asymptotic form of the coagulation kernel defined in Eq. (3), one obtains

1 -
Fﬁ(xle M x"_Z)v(l_xl —X2— R '—x,, _2)1+“+V—Tf0 dy Ko(yal_y)[y(l—‘y)] T ) (AS)
where
Ko(ax,ay)=ak°K0(x,y) Aog=pn+v. (A6)
Defining
Kl(xl,xz, “ee ,xn_2,1_x1—x2— c '—x”_z)z(xle ct xn_z)v(l_’xl—xZ_ tet —xn_2)”1 > (A7)
and
S(= [ ldx K(x, 1=x;0)x (1=, (A8)
with Ki(ax,ay)=akiKi(x,y) and A; =pu; +v, and introducing
Ho=H
pi=ip——E—, (A9)
n—1
one can write F as
F=Kl(x1,x2, [P ,x"_2,1_x1—x2_ ce _x”_2)s()\.o) . (A10)
Finally, one obtains
1 1=x, I=xy=xy= =%,
I=S(7L0)f0 dxlfo dx, - fo K (X15Xg o s Xp—gp =X —Xy— ="+ =X, _,)
x(xle"'xn_z)—T(l—x]_x2_ A _xn_z)_T- (All)
By repeating the above procedure one finds
n—2
I=TI SA). (Al12)
i=0
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